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Abstract

This paper presents a finite element fluid–structural interaction model for the lateral semicircular canal system of the

inner ear. The endolymph is modeled as a slightly compressible Newtonian fluid and the cupula partition is represented

by a linearly elastic solid. The fluid–structural interaction problem is treated rigorously with a strong coupling between

the fluid flow and the structural displacements. The time evolution of the endolymphatic velocity and pressure fields and

cupular displacement and stress fields are closely examined to reveal the intricate dynamics that takes place in the ves-

tibular system during the caloric irrigation test.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The internal ear is a triumph of miniaturization and

optimization; a three-dimensional inertial-guidance sys-

tem, an acoustic amplifier and a frequency analyzer all

compacted into the volume of a child�s marble. The reli-

able and efficient performance of the inner ear depends

on a magnificent complement of hydraulic and mec-

hano-electrical transduction processes that are responsi-

ble in the cochlea for our sensitivity to sound, in the
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utricule and saccule for our perception of linear acceler-

ation and gravity, and in the three semicircular canals

(SCC) for our appreciation of rotary acceleration. In

this paper, we are concerned with the fluid–structural

dynamics that takes place in the semicircular canals of

the vestibular system. When the head is subject to an

angular acceleration the lag in the endolymphatic fluid

in the SCC imparts a force on a sail-like membrane

called the cupula. The cupula partition is embedded with

sensory hair cells. As the cupula deforms, an intricate

transduction process involving the hair cells generates

signals which when processed by the brain determine

the magnitude and direction of the imposed angular

acceleration. This information is automatically coordi-

nated with the eyes thus enabling the maintenance of

gaze during a head movement. Naturally, any alteration

of this intricate and synergetic fluid–structural interac-

tion (FSI) by disease or by environment would result
ed.
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in vestibular disorders with symptoms such as vertigo,

and dizziness.

One of the most widely used non-physiological tech-

niques for examining vestibular performance is the calo-

ric stimulation test. This procedure uses thermal

irrigation of the ear canal with cold and/or hot fluid

(water or air) to elicit a vestibular signal. The intensity

of the signal is indicated by the associated eye movement

or nystagmus. Robert Barany received the 1914 Nobel

Prize in medicine for describing the endolymphatic flow

that causes cupular deflection during the caloric test in

terms of a buoyancy-driven natural convective mecha-

nism driven by the thermal irrigation [1]. Microgravity

caloric tests aboard the 1983 SpaceLab1 mission pro-

duced nystagmus with an intensity comparable to those

elicited during post- and pre-flight tests on earth [2], thus

contradicting the basic premise of Barany�s convection

hypothesis and pointing out that the physics of the

vestibular apparatus needs to be more precisely

deciphered.

The first mathematical description of semicircular

canal macromechanics is credited to Wilhelm Steinhau-

sen [3] who formulated a classical torsion-pendulum

model for the dynamic behavior. This analogy viewed

the loop of endolymph as providing rotational inertia,

the cupula as invoking the restoring stiffness, and the vis-

cosity of the endolymph as supplying the viscous drag.

As a result, the torsion pendulum model is essentially a

band-pass filter relating the displacement of the cupula

to the angular velocity of the head. The first work, which

seriously focused on the fluid dynamics of the semicircu-

lar canals, is due to Van Buskirk et al. [4]. They assumed

the endolymph to be an incompressible Newtonian fluid

and accounted for the effect of the utricle and cupula

through their contributions to the overall pressure gradi-

ent term. The fluid dynamics of the caloric test was first

examined by Steer [5] and then by Young [6]. They used

a lumped model of the endolymph loop to evaluate the

pressure difference across the cupula during the thermal

stimulation and relate that to the experimentally meas-

ured nystagmus behavior. Later Damiano [7] developed

a continuum model describing the macromechanics of

the caloric stimulation. He exploited the slender torroi-

dal geometry of the canal and used perturbation analysis

to study the dynamic response of the canal system to a

singular harmonic thermal line source applied directly

to the semicircular duct wall.

In this paper, we will present a comprehensive FSI

model for the lateral semicircular canal (LSCC) system

outside the restrictive confines of a lumped system ap-

proach or perturbation analysis and for the first time

using a finite element numerical model, we will rigor-

ously examine the details of the dynamic coupling be-

tween the endolymphatic flow in the canal and the

structural deformation of the cupula partition during

the caloric test.
2. Mathematical formulation

A two-dimensional cross section of the LSCC is pre-

sented in Fig. 1(a). The geometry and all the associated

dimensions are extracted from measured human data by

Curthoys and Oman [8]. The canal system consists of

three main regions: the semicircular duct, the ampulla

and utricle cavities. The ampulla cavity is the widened

area of the canal at one end just before it communicates

with the utricle. A crest like septum called crista trans-

verses the ampulla perpendicular to the longitudinal axis

of the canal. The cupula extends from the surface of the

crista to the ceiling of the ampulla as shown in Fig. 1

forming what appears to be a watertight seal. The calo-

ric test is usually performed with the patient in supine

position and the head tilted 30� up placing the horizon-

tal canal in the vertical plane aligned with the gravita-

tional field. Thus the endolymphatic flow generated by

the caloric irrigation is driven by two mechanisms: nat-

ural convection due to the gravitational body force and

expansive convection due to the thermal expansion of

the endolymph.

In order to formulate the governing equations of mo-

tion and energy conservation for the cupula–endolymph

system, an Arbitrary Lagrangian Eulerian (ALE) ap-

proach is adopted. Fluid flow in the semicircular canal

system is described in terms of the two dimensional Na-

vier–Stokes equation:

oq
ot

þr
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�ðq u
*Þ ¼ 0 ð1Þ
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o u
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where density is given by
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The energy equation can be written as:
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Here, q, u
*
, p, and T, are respectively the density, veloc-

ity, pressure and temperature. Time is denoted by t and

l, bT, c, k, are respectively the dynamic viscosity, ther-

mal expansion coefficient, heat capacity, and thermal

conductivity of the fluid. The gravitational acceleration

is represented by g
*
and subscripts o and m refer to ref-

erence and mesh values respectively.

According to the Eqs. (1)–(4) the endolymph is as-

sumed to be a Newtonian weakly compressible fluid with

constant properties except for density that is a linear

function of the temperature but not pressure. The values

for the endolymph conductivity, volume expansion

coefficient, reference density, and viscosity are taken

from measured data provided by Steer [9] and its specific

heat was assumed to be equal to water. Because of the



Fig. 1. (a) A Cross-Sectional View of The LSCC in The Optimum Supine Orientation; (b) Finite Element Mesh used for The FSI

Simulations.
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temperature dependence of density, there is a tight cou-

pling between the energy and Navier–Stokes equations

through the density term in the continuity equation

and the buoyancy term in the momentum equation.

Non-slip stationary boundary conditions are applied

at all the physical boundaries of the canal except for the

wetted surfaces of the cupula, where the velocity is spec-

ified through the coupling with the structural equations,

and at the outlet to the common crux, where the nodal

velocities are left free to accommodate inflow and out-

flow of endolymph between the LSCC and the other ca-

nals. All the boundaries of the canal system are assumed

to be at the body temperature, namely 37 �C, which is
also the reference temperature, T0. At time zero, an

instantaneous temperature rise or fall is imposed on a

segment of the canal as shown in Fig. 1.

Once the endolymph is brought into motion due to

either natural or expansive convection or both, it pro-

duces a pressure differential across the cupula causing

it to bend. The Navier equation of motion for the cupula

can be written in terms of the displacement vector, d
*
, as

qc

o2 d
*

ot2
¼ r

*

�rþ qc g
* ð5Þ

Following the incremental Updated Lagrangian ap-

proach and through application of principal of virtual
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displacement and Gauss�s theorem, a weak form of Eq.

(5) is derived as:

Z
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Fig. 2. Time Sequences of The Endolymph Velocity and Cupula Disp

Stress Fields (b) during a Hot Supine Caloric Test with DT = 7 �C. M
t = 20s; and 0.28(10)�2cm/s at t = 100s. Displacement: Maximum Valu

(White). Stress: Maximum Value=8.6dynes/cm2; Contours from 1cm
Here S and E are the second Piola–Kirchhoff stress and

Green strain tensors respectively. The virtual work dis-

placement vector, the traction force, and the Cauchy

stress tensor are represented by d d
*

, t
*
, and r respec-

tively. Finally, V and A depict volume and area, while

subscripts c and e refer to the solid and endolymph,

respectively. The relationship between the stress and

strain tensors can be expressed in a generalized form

such as
lacement Fields (a) and The Endolymph Streamline and Cupula

aximum Velocity: 0.60(10)�2 cm/s at t = 0.1s; 0.38(10)�2 cm/s at

e=0.194(10)�1 cm; Contours from 0.02cm (Black) to �0.002cm

(Black) to 0dynes/cm2 (White).
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S ¼ DE ð7Þ

For a 2D plane stress case and assuming that the cupula

is a linearly elastic material undergoing large deforma-

tion involving small strains, the elasticity tensor D can

be defined in terms of the Young�s Modulus, E, and

Poisson ratio, m, of the solid as:

D ¼
1 m 0

m 1 0

0 0 1�m
2

0
B@

1
CA E

1� m2
ð8Þ

The structural properties of the cupula are taken from

Damiano [7]. Its Poisson Ratio was set to be 0.48,

appropriate for a nearly incompressible membrane and

its Young�s Modulus was varied parametrically between

5–100dynes/cm2 with 5dynes/cm2 used as the base value.
Fig. 3. Time Sequences of The Endolymph Velocity and Cupula Disp

Stress Fields (b) during a Hot Supine Caloric Test with DT = 1 �C. M
t = 20s; and 0.39(10)�3cm/s at t = 100s. Displacement: Maximum

�0.00028cm (White). Stress: Maximum Value=0.64dynes/cm2; Conto
Heat transfer through the cupula is governed by an

energy conservation equation similar to Eq. (4) for the

fluid. The conductivity, density, and specific heat of

the cupula were assumed to be the same as the

endolymph.

The movement of cupula is restricted at the top and

bottom of its cross-section where a tight seal is formed

with the ampulla wall. Cupula displacements at these

two boundaries are set to zero. The strong coupling be-

tween the fluid flow and the structural deformations is

rigorously preserved through a balance of traction

forces and continuity of velocities and displacements at

the wetted surfaces of the endolymph–cupula bounda-

ries and can be summarized as follows:

de ¼ dc ð10Þ
lacement Fields (a) and The Endolymph Streamline and Cupula

aximum Velocity: 0.85(10)�3 cm/s at t = 0.1s; 0.54(10)�3 cm/s at

Value=0.278(10)�2 cm; Contours from 0.0028cm (Black) to

urs from 0.1cm (Black) to 0dynes/cm2 (White).
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3. Numerical methodology

FSI problems have drawn considerable attention in

many areas of engineering and science in recent years.

As a result, an impressive array of numerical capabili-
Fig. 4. Time Histories of Cupula Displacement (a), Cupula

Velocity (b), and Transcupular Pressure Difference (c) for a Hot

Supine Caloric Test with DT = 1 �C.
ties to deal with FSI have been developed and widely

used in academia and industry [10,11]. In the present

work, numerical solutions of the governing system of

coupled nonlinear partial differential equations are gen-

erated using a customized in-house version of the finite

element code Fidap. Transient solutions are generated

using the implicit backward Euler time integration

scheme for the flow equations and the second order

Bossak integration scheme for the structural equation.

At each time step (loop) the computational fluid

dynamics and computational structural dynamics coun-

terparts of the problem are solved together following

the ALE approach based on a moving mesh which de-

forms according to the pseudo-elastic body displace-

ments at the cupula-endolymph surfaces. The strong

coupling between the fluid flow and the structural

deformations is rigorously preserved through the bal-

ance of the traction forces and the imposition of trans-

fer-compatibility conditions for velocity and

displacement at the wetted surfaces. An iterative segre-

gated solution methodology is implemented that can be

briefly summarized as follows:

CFD: Initial conditions for the velocity and temper-

ature variables, boundary conditions at the non-wetted

surfaces, and transfer-compatibility conditions at the

wetted surfaces are imposed. The fluid velocity and pres-

sure and temperature fields are solved for using a segre-

gated scheme. The traction force vectors at the wetted

surfaces are calculated.

CSD: The external loads and fluid traction forces are

applied and the initial and boundary conditions for the

equation of motion of the solid are imposed. Eq. (6) is

integrated to yield the structural displacement, velocity

and acceleration vectors. The displacements at the wet-

ted surfaces are calculated and the surface nodal loca-

tions are adjusted accordingly.

CMD: The ALE mesh is solved for according to the

pseudo-elastic body displacements at the wetted surfaces

and using predesignated and optimized dynamic

mesh parameter. The mesh geometry is updated and

the mesh velocity field is calculated for input to the

CFD loop.

The solutions presented in this paper were generated

on a nonuniform mesh with 6374 quadratic elements as

shown in Fig. 1(b). At each time step, a convergence tol-

erance of 0.0001 was used for the velocity and displace-

ment norms and a convergence tolerance of 0.001 was

used for the fluid–solid surface norm. All solutions were

started with the entire domain at a uniform body tem-

perature and zero velocity, displacement, and stress

fields and terminated when steady state conditions were

reached. Values for the mesh elasticity and Poisson ratio

were chosen to be 1dynes/cm2 and .001, respectively.

Comprehensive grid and time-step convergence tests

were performed to ensure spatial and temporal resolu-

tion of the generated solutions.
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4. Results and discussion

During the caloric test, the ear canal is usually irri-

gated with water at around 44 �C. Cawthrone and Cobb

[12] have experimentally shown that this irrigation tem-

perature produces a temperature rise of about 1 �C in the

region of the horizontal canal closest to the temporal

bone. Therefore, for the base case simulations presented

here, it is assumed that all the boundaries of the canal

system are at the body temperature, namely 37 �C, and
at time zero, a 1 �C temperature rise is imposed on a sec-

tion of the canal as indicated in Fig. 1. This thermal im-

pulse is maintained throughout the transient simulation

until steady state conditions are reached.

The evolution of the endolymphatic flow and its im-

pact on the the cupular displacement and stress fields

during a hot caloric test are depicted in the time se-

quences of Figs. 2 and 3 for imposed temperature in-

creases of 7 �C and 1 �C, respectively. Although the

7 �C temperature rise represents the maximum attaina-

ble temperature increase, it is unrealistic as the results

of Cawthrone and Cobb [12] suggest. This case has

been included here only because it results in a strong

endolymphatic and a large cupular displacement that

can be easily discerned by a naked eye. At t = 0.1 secs,

the temperature boundary layer has almost fully pene-

trated the duct. Consequently, an endolymphatic flow

ensues that is driven almost equally by buoyant and

expansive convection. At this instance the cupula is still

in its unstressed and undeformed state as indicated in

Fig. 2 and 3. At t = 20s, the clockwise recirculating

flow due to the buoyancy-driven natural convection be-

comes more pronounced, especially, in the vicinity of

the heated-section creating a negative pressure gradient
Fig. 5. Time History of Cupula Displacement for a
across the cupula. This fluid loading causes slight bend-

ing of the membrane as evident from the displacement

fields of Fig. 2(b) and Fig. 3(b) and creates stress con-

centrations in the regions around the crista, along the

lower ampulla wall, and near the region of maximum

cupular displacement close to the vertical center of

the membrane as shown in Fig. 2(b) and Fig. 3(b). At

t = 100s, steady-state conditions are reached where-

upon the expansive convection has almost completely

dissipated itself and a relatively strong natural convec-

tion vortex has emerged as the dominant endolym-

phatic flow mechanism in the canal. It is interesting

to note that the model predicts a bulging or bending

of the cupula towards the utricle in accordance with

the experimental observations for a hot caloric stimula-

tion. This is due to the negative pressure gradient

imparted across the cupula by the clockwise recirculat-

ing vortex. Although, the ensuing natural convective

flow is recirculating, this situation is sometimes errone-

ously referred to in the literature as an ampullopetal

flow as if the endolymph flow was moving towards

the ampula/cupula.

Fig. 4 contains the time histories for displacement,

velocity, and pressure of a point (P) on the cupula sur-

face (see Fig. 1) for the DT = 1 �C case. The highest cup-

ula velocities occur at the initiation of the test as evident

from Fig. 4(b) and are due to the impact of the rapid

expansive flow. But the expansive velocity diminishes

quite fast and thus contributes very little to the overall

displacement of the cupula that reaches a plateau in

about 80s as seen in Fig. 4(a). Thus most of the cupula

displacement is due to the natural convective flow that

takes over from early on, marked by a sudden change

of slope in the velocity history of Fig. 4(b). Naturally,
Cold Supine Caloric Test with DT = �1 �C.



Fig. 6. Time History of Cupula Displacement for a Hot Prone Caloric Test with DT = 1 �C.
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as a steady state recirculating flow condition is ap-

proached and the cupula displacement reaches a plateau,

the cupula velocity goes to zero. The time evolution of

the pressure drop across the cupula (along the line of

maximum deflection) is presented in Fig. 4(c). It is inter-

esting to note that there is a one-to-one correspondence

between the transcupular pressure difference of Fig. 4(c)

and the cupula displacement of Fig. 4(a).

Caloric experiments indicate that there is a reversal

of nystagmus if a cold caloric test is performed in the su-

pine position, or if the patient is oriented in the prone

position during a hot caloric test. This is corroborated

by the FSI simulations shown in Figs. 5 and 6 for the

cold/prone and a hot/supine caloric test conditions. Both
Fig. 7. Effect of the Young�s Modulus of Elasticity o
of these cases, result in a counterclockwise natural con-

vective flows (as shown in the insets of Figs. 5 and 6)

that produce a positive pressure difference across the

cupula resulting in a bending or bulging of the partition

towards the canal side of the ampulla. This situation is

referred to, again incorrectly, as the ampullofugal flow

denoting an endolymph that flows away from the cupula

and towards the canal.

The extent of cupular deflection is controlled by two

important factors. First is the imposed temperature rise

(or the irrigation temperature) that controls the intensity

of the endolymphatic flow. Second is the Young�s Mod-

ulus of the cupula that determines the cupular structural

response to the dynamic fluid loading. Our results indi-
f the Cupula on the Maximum Displacement.
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cate that while the maximum cupula displacement dur-

ing a caloric test varies linearly with the irrigation tem-

perature, it has a nonlinear dependence on the

Young�s Modulus as demonstrated in Fig. 7. This rela-

tionship can be best described by a power law and arises

due to the boundary value problem that is inherently

solved for the cupula geometry.
5. Conclusion

In this paper we presented a finite element FSI model

for the LSCC system with a rigorous treatment of the

coupling between the fluid flow and the structural

dynamics counterparts. Transient simulations were used

to reveal the details of the dynamic interaction between

the endolymphatic flow driven by both natural and

expansive convections and the structural deformation

of the cupula during a typical caloric irrigation test.

Numerical results are in qualitative agreement with

experimental and clinic observations of the nystagmus

directions for hot-supine, cold-supine and hot-prone test

conditions. Parametric simulations also indicate that the

maximum displacement of the cupula is a strong

function of its structural properties. Therefore, a more

elaborate and realistic material model for the

cupula, which is a hydrated fiber-reinforced gel-like

structure, is deemed necessary and will be developed in

future.
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